5.9 COMPLEMENTARY SUBSPACES

The sum of two subspaces \mathcal{X} and \mathcal{Y} of a vector space \mathcal{V} was defined on p. 166 to be the set $\mathcal{X} + \mathcal{Y} = \{\mathbf{x} + \mathbf{y} \mid \mathbf{x} \in \mathcal{X} \text{ and } \mathbf{y} \in \mathcal{Y}\}$, and it was established that $\mathcal{X} + \mathcal{Y}$ is another subspace of \mathcal{V} . For example, consider the two subspaces of \Re^3 shown in Figure 5.9.1 in which \mathcal{X} is a plane through the origin, and \mathcal{Y} is a line through the origin.

Figure 5.9.1

Notice that \mathcal{X} and \mathcal{Y} are *disjoint* in the sense that $\mathcal{X} \cap \mathcal{Y} = \mathbf{0}$. The parallelogram law for vector addition makes it clear that $\mathcal{X} + \mathcal{Y} = \Re^3$ because each vector in \Re^3 can be written as "something from \mathcal{X} plus something from \mathcal{Y} ." Thus \Re^3 is resolved into a pair of disjoint components \mathcal{X} and \mathcal{Y} . These ideas generalize as described below.

Complementary Subspaces

Subspaces \mathcal{X} , \mathcal{Y} of a space \mathcal{V} are said to be complementary whenever

$$\mathcal{V} = \mathcal{X} + \mathcal{Y} \quad \text{and} \quad \mathcal{X} \cap \mathcal{Y} = \mathbf{0},$$
 (5.9.1)

in which case V is said to be the **direct sum** of X and Y, and this is denoted by writing $V = X \oplus Y$.

• For a vector space V with subspaces X, Y having respective bases \mathcal{B}_X and \mathcal{B}_Y , the following statements are equivalent.

$$\triangleright \quad \mathcal{V} = \mathcal{X} \oplus \mathcal{Y}. \tag{5.9.2}$$

- For each $\mathbf{v} \in \mathcal{V}$ there are *unique* vectors $\mathbf{x} \in \mathcal{X}$ and $\mathbf{y} \in \mathcal{Y}$ such that $\mathbf{v} = \mathbf{x} + \mathbf{y}$. (5.9.3)
- $\triangleright \quad \mathcal{B}_{\mathcal{X}} \cap \mathcal{B}_{\mathcal{Y}} = \phi \text{ (empty set) and } \mathcal{B}_{\mathcal{X}} \cup \mathcal{B}_{\mathcal{Y}} \text{ is a basis for } \mathcal{V}. (5.9.4)$