5.9 COMPLEMENTARY SUBSPACES

The sum of two subspaces \mathcal{X} and \mathcal{Y} of a vector space \mathcal{V} was defined on p. 166 to be the set $\mathcal{X}+\mathcal{Y}=\{\mathbf{x}+\mathbf{y} \mid \mathbf{x} \in \mathcal{X}$ and $\mathbf{y} \in \mathcal{Y}\}$, and it was established that $\mathcal{X}+\mathcal{Y}$ is another subspace of \mathcal{V}. For example, consider the two subspaces of \Re^{3} shown in Figure 5.9.1 in which \mathcal{X} is a plane through the origin, and \mathcal{Y} is a line through the origin.

Figure 5.9.1
Notice that \mathcal{X} and \mathcal{Y} are disjoint in the sense that $\mathcal{X} \cap \mathcal{Y}=\mathbf{0}$. The parallelogram law for vector addition makes it clear that $\mathcal{X}+\mathcal{Y}=\Re^{3}$ because each vector in \Re^{3} can be written as "something from \mathcal{X} plus something from \mathcal{Y}." Thus \Re^{3} is resolved into a pair of disjoint components \mathcal{X} and \mathcal{Y}. These ideas generalize as described below.

Complementary Subspaces

Subspaces \mathcal{X}, \mathcal{Y} of a space \mathcal{V} are said to be complementary whenever

$$
\begin{equation*}
\mathcal{V}=\mathcal{X}+\mathcal{Y} \quad \text { and } \quad \mathcal{X} \cap \mathcal{Y}=\mathbf{0}, \tag{5.9.1}
\end{equation*}
$$

in which case \mathcal{V} is said to be the direct sum of \mathcal{X} and \mathcal{Y}, and this is denoted by writing $\mathcal{V}=\mathcal{X} \oplus \mathcal{Y}$.

- For a vector space \mathcal{V} with subspaces \mathcal{X}, \mathcal{Y} having respective bases $\mathcal{B}_{\mathcal{X}}$ and $\mathcal{B}_{\mathcal{Y}}$, the following statements are equivalent.
- $\mathcal{V}=\mathcal{X} \oplus \mathcal{Y}$.
\triangleright For each $\mathbf{v} \in \mathcal{V}$ there are unique vectors $\mathbf{x} \in \mathcal{X}$ and $\mathbf{y} \in \mathcal{Y}$ such that $\mathbf{v}=\mathbf{x}+\mathbf{y}$.
$\triangleright \mathcal{B}_{\mathcal{X}} \cap \mathcal{B}_{\mathcal{Y}}=\phi$ (empty set) and $\mathcal{B}_{\mathcal{X}} \cup \mathcal{B}_{\mathcal{Y}}$ is a basis for \mathcal{V}. (5.9.4)

